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Abstract 

Simple models of the cosmos are given by space-forms of a stretched Ssphere. The isometric 
embedding of these manifolds into higher-dimensional Euclidean spaces is an unsolved problem 
that has yielded some partial solutions of bizarre beauty. 
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1. Introduction. The S3 

The idea that space is finite is at least as old as the ancient Greek philosophers. However, 
if they also believed in R3 of Euclid’s geometry, they were suffering from schizophrenia. 
The paradigm of a compact world is the S”, the sphere in four dimensions. It is easily 
imagined as an analogon to an intrinsic description of the S’. 

One can visualize the S* by playing Santa describing co-latitude circles about his home. 
Their circumference increases less than linearly with the radius. reaches a maximum at the 
equator and shrinks thereafter finally to zero at the south pole. 

According to the Swiss mathematician Andreas Speiser [3 I] it was Dante Alighieri who 
envisioned the S’ as a model of his hell-centered medieval universe. Santa is replaced by 
the prince of darkness in the center of the earth The co-latitude circles are now upgraded 
in dimension to concentric spheres like the surface of terra followed by those of the seven 
planets and the outermost of the fixed stars. But beyond this sphere of maximal area Dante 
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saw further orbs in el paradiso populated by good souls, saints and angels and decreasing 
in area with increasing distance and holiness - ending in the most distant sphere shrunk to 
a point: God the antipode of the devil. Tintoretto painted this heavenly scene a la Dante. 
When you visit Paris, look it up in the Louvre! 

In exact mathematical form, free of theology, the S3 appears in the middle of the 19th 
century. The Swiss high school teacher Ludwig Schlafli embeds it into a four-dimensional 
Euclidean space R4 with metric 

ds2 = dX2 + dy2 + dz2 + du2 (1.1) 

as a hypersurface through the equation 

x2 + y2 + t2 + u2 = R2 = const > 0. (1.2) 

But his theory of manifold continuity is published only half a century later [28]. 
Introducing hyperspherical coordinates into R4 we have 

x+iy= RsinXsin#e’@, z = RsinXcosO, u = Rcos~. (1.3) 

We calculate the differentials dx, dy, dz, and du, substitute into Schllfli’s four-dimensional 
Pythagoras (1.1) and obtain for dR = 0 

ds2 = R2(dX2 + sin2 X(de2 + sin2 0 d#2)), 

the intrinsic line element of the S3 with radius R in polar coordinates. 

(1.4) 

In Dante’s universe the devil sits at x = 0. A 2-sphere centered about him with the 
radius RX has area 4n(R sin x)~. The 9th heaven, the primum mobile, has radius i Rx. At 
x > in we are in the empyreum, the abode of god, and the Almighty thrones at x = n. 

We know precisely the date when the intrinsic description of the S3 was promulgated. It 
was the Saturday before Pentecost 1854 around noon. The 77-year old Gauss, near death, 
had summoned his 2%year old postdoc Bernhard Riemann and told him to give a lecture to 
the philosophical faculty of Gottingen University the following day - ro get the thing over 
with, as Gauss said. What he heard that day must have stunned him. In his unpublished papers 
Gauss had foreseen much of the mathematics in his century and he was reluctant to praise 
anything he had discovered himself. Riemann’s student Richard Dedekind tells us that after 
the lecture Gauss walked home with his physicist friend Wilhelm Weber praising the depth 
of Riemann’s ideas with an excitement unheard of from the prince of the mathematicians, 

P51 
Riemann’s lecture in which he had developed the intrisic Riemannian geometry was pub- 

lished in 1868, two years after his death. William Kingdon Clifford translated it immediately 
into English and made a singular discovery about Riemann’s S3 [5]. 

So far we have looked at the S3 as two solid three-dimensional balls: the northern ball 
defined by the range of the radial coordinate x from zero to $IT and the southern ball defined 
by the range from ;X to X. The two solid balls are glued together at the 2-sphere x = irr, 
the surfaces of these two balls. This is completely analogous to imagining the 2-sphere 
S2 consisting of two discs, the northern and the southern hemispheres glued together at 
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the equator. Clifford looked at the S3 in a different way that has no analog in the S*. His 
discovery is best described by combining the real coordinates x and y into the complex 
number zt and z with u into the complex number ZI 

x+iy=z1, z+iu =z2. 

We can then write the equation of the S3 as 

x2 + _v* + z2 + U* = zlZl + ~222 = R*, 

(1.5) 

(1.6) 

where a bar indicates the complex conjugate. The metric in R4 becomes then correspond- 
ingly 

ds’ = dzl dzt + dzZdi2. (1.7) 

Complex numbers can also be represented through polar coordinates in their Argand planes: 

zt = rtei91. z2 = r2ei@2, @jmod2rr, j = 1.2. (1.8) 

The S” is thus given by the equation 

Y; + r; = R*. ( 1.9) 

Taking t-1 constant fixes r2 - it has to be positive and defines a two-dimensional surface, 
parametrized by the real coordinates 41 and 4~2. This gives a map of a square 2n x 2x into 
the S3 (see Fig. 1). 

Opposite edges of the square have to be identified because of the periodicity of the 
exponential functions. By identifying the upper and the lower edge we turn the square into 
a cylinder and the left and the right edges into circles. When we glue these circles together 
we make the cylinder topologically into a torus. The surface 

t-1 = a = const, Oca<R, (1.10) 

42 A 

2?r // // 

/ / 
/ / 

/, // 
2* 41 

Fig. I 
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is thus a two-dimensional torus. The points with rt < u form the interior of a solid bagel 
and, surprisingly, the points with rr > a form the interior of another solid bagel since 

r2 = +Jq < jFZ7 = const. (1.11) 

Clifford’s S3 consists thus of two solid bagels glued together over their common surface, 
called the Clifford surface. The real shock came when Clifford calculated the metric on his 
torus. With rt and r2 being constant 

dzt = irte @I d& , dz2 = ir2ei@2 d& (1.12) 

and, therefore, from ( 1.7) 

ds2 = I dzt I2 + I dz212 = ry d& + ‘22 d$$ 

and with new coordinates 

(1.13) 

rl& = C. r242 f rl, (1.14) 

he obtained 

ds2 = dt2 + dv2. (1.15) 

This means: the Clifford surface is flat like the Euclidean plane and locally indistinguishable 
from it. 

Clifford’s discovery signalled a turning point in our thinking about the structure of space, 
Mathematicians realized that the local structure of space did not determine its properties in 
the large and was compatible with different topologies of the whole manifold. 

Felix Klein discovered that a flat torus need not be orientable: the Klein bottle [ 131 - 
and found that the projective plane has the topology of a 2-sphere on which opposite points 
are identified. Wilhelm Killing then teacher at a Seminary for priests posed the problem 
of finding the possible forms of spaces with constant curvature (planes, spheres, and their 
hyperbolic analogs) [ 121. He called it the Clifford-Klein space problem. He suggested that 
it could be solved by finding all the properly discrete subgroups of the group of motions of 
the space which - apart from the identity - leave no point fixed. The classification was up 
to affine transformations of the space forms. 

The two-dimensional flat torus was obtained by identifying all points under the transfor- 
mations 

x’=x+2nm, y’=y+2;rrn, m,n E Z. (1.16) 

These transformations form a fixpoint-free subgroup of motions of the plane and the group 
is properly discrete since the orbit of a given point (xc, yo) containing all its transforms has 
no point of accumulation. 

These were some of the early results [30]: 
(a) The S2” has as only other space form the RP 2n, the 2n-dimensional real projective 

space, that is obtained from the S 2’z by identifying opposite points. 
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(b) The Euclidean plane has four space forms beside the full plane itself, i.e., cylinder. 
Mobius band, torus, and Klein bottle. 

(c) There exist also compact space forms of the flat three-dimensional space obtained by 
identifying all points under 

x’=x+27rm, m = (ml, m2, m3), Wlj E Z. (1.17) 

(d) The three-dimensional space of constant positive curvature has an infinite number of 
space forms. Typical examples are Killing’s lens spaces. They are characterized by two 
relative prime positive integers p and q with p > 1. The points of the S3 are given by 
the equation 

(z1 I2 + 1z212 = R2. (1.18) 

The transformations 

2nin 
z; = exp - ( 1 2niqn 

ZI, 
P 

z; = exp - 
( 1 

223 n=O,l,..., p-l. (1.19) 
P 

are a properly discrete subgroup of the isometrics for the space S’ free of fixed points. We 
obtain the lens space L (p, q) by identifying the p-tuples of points that are obtained through 
the action of the group on every point of the space. This quotient space has a volume that 
is p-times smaller than the volume of S3. The simplest non-trivial example of a lens space 
is obtained for p = 2, q = 1. The elements of the subgroup are the two transformations 

n = 0: (z; = z1, z; = z2), n = 1: (z; = -zt, z; = -z2). ( I .20) 

The lens consists thus of the ball forming the Northern hyper-hemisphere of S3 with opposite 
points on its surface identified. This space form is known as RP”, the three-dimensional 
real projective space. 

The lens spaces do not exhaust the possibilities for positive curvature. The great topol- 
ogist Heinz Hopf gave exact proofs for Killing’s theory of the space forms in his thesis 
in 1925 [lo]. William Threlfall and Herbert Seifert listed in 1931-32 [34] all possibilities 
completely. Without exception the spaces are compact. 

2. Models of the universe 

Bernhard Riemann and William Kingdon Clifford had tried to link the curvature of space 
with the presence of matter and its gravitational field. Not much is known about these 
speculations. Both authors died at an early age of tuberculosis. After Riemann’s lecture 
had been published physicists like Hermann von Helmholtz and astronomers like Karl 
Schwarzschild thought seriously that the physical space could have a curvature different 
from zero. From the measurement of star parallaxes Schwarzschild concluded around 1900 
that if space was an S3 its radius R had to be larger than 100 light years [29]. 

In 19 16 Albert Einstein and David Hilbert independently found the equations that relate 
the curvature of space-time with the energy-momentum-stress tensor of matter in Einstein’s 
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theory of gravitation. In the following year Einstein proposed a model of the universe with 
the line element 

ds2 = - dt2 + R2[dX2 + sin2 x (de2 + sin2 B d@2)] (2.1) 

known as the Einstein cosmos. Its space sections for t = const were given by Riemann’s 
S3 with radius R. By suggesting that the space be compact he avoided the use of boundary 
conditions for his field equations. Since the matter was on the average at rest in S3 he thought 
to have shown that the rotation of a body like the earth against Newton’s absolute space 
was now a rotation against a physical agent, the matter in S3. The physicist Ernst Mach had 
criticized Newton’s dynamics by saying that rotation should only be conceived as rotation 
relative to the distant masses in the universe [ 171. Einstein thought that his theory thus 
incorporated Much’s principle. When he visited Gottingen in 19 18 the mathematician Felix 
Klein suggested to him that the space might not be an S3 but an RP3. Einstein reportedly 
caught on immediately by saying you mean, it’s only half as large. 

The spherical space S3 and the elliptical space R P3 are isotropic and homogeneous. No 
point is distinguished in these spaces as a center and no direction is singled out. The only 
other three-dimensional spaces with this property are the Euclidean R3 and the hyperbolic 
space of constant negative curvature, both not compact. 

The Russian meteorologist and mathematician Alexander Friedmann discovered in 1922 
solutions for the Einstein field equations with matter in which the radius R(t) was a function 
of the time t. They could describe an expanding universe. Based on the observations of the 
astronomers Vesto Slipher and Edwin Hubble the Belgian priest Georges Lemaitre proposed 
in 1931 a singular beginning for Friedmann’s model. It is widely known as the big bang 
theory of the universe and now probably taught in kindergarten. 

Similar models of an expanding universe for zero and negative curvature of space were 
found after Friedmann’s discovery. To this day astronomers have not been able to decide 
empirically which sign for the curvature of space was selected by God. Many cosmologists, 
trying to read God’s mind - as one says nowadays - vote for positive curvature since space 
becomes then compact in a natural way. This might enable astronomers to study a fair 
sample of the cosmos - a hopeless task in a spatially infinite universe. 

3. Bianchi’s models 

It is clear that the distribution of matter, therefore the space itself, in the real universe is not 
exactly isotropic and homogeneous. Thus the need for more general models of the universe. 
The great difficulties in finding solutions to the system of 10 highly non-linear partial 
differential equations of the second order in Einstein’s theory led us to study more general 
models with still a high degree of symmetry, that reduce Einstein’s equations to a system of 
ordinary differential equations. This can be achieved by keeping space homogeneous but 
relaxing the requirement of isotropy. The idea is to stretch the S3 in different directions by 
different amounts but everywhere by the same amounts independent of position. 
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The concept of an anisotropic but homogeneous space has no analogon in two dimen- 
sions. For a 2-space to be homogeneous its Gaussian curvature has to be constant and that 
leads automatically to rotational invariance about every point, i.e. local isotropy. It was a 
major geometrical discovery in the last century when the Italian geometrician Luigi Bianchi 
classified the real three-dimensional Lie algebras [4] and found nine different types of 3- 
spaces in which their Lie groups act as isometries. Only Bianchi type IX leads naturally to 
a compact space and a deformation of the S”. 

To appreciate the exquisite beauty of Bianchi’s construction we return to its paradigm. 
the S3. Compared to S*, hailed since Pythagoras as a symbol of perfection, the S3 possesses 
an even higher symmetry as the only n-dimensional sphere that is itself a simple and semi- 
simple Lie group (the other simple but not semi-simple one is S’, the circle). The group is 
known as SU2, the group of 2 x 2 unitary matrices with determinant I which is isomorphic 
to the compact symplectic group Sp( l), the group of unit quatemions. This group is also 
the covering group of S0(3), the rotation group of the Euclidean R”. 

4. Hamilton’s quaternions 

Quatemions form a four-dimensional vector space over the real numbers. A quatemion 
{ can be written in Hamilton’s units as 

~=ul+~i+vj+z,k, u,x,v,z E R, 1.i.j.k E H. 

with 

i* = j2 =k* = -1, ij=-ji=k, jk=-kj=i, ki=-ik=j 

They form a skew field and the conjugate quatemion g is defined by 

c=uI--Xi-yj-zk. 

The norm of the quatemion { is given by 

t$ = $4 = u2 +x2 + y* + 22, 

and for two quatemions e and n one obtains 

fi= ijc. 

The points of S3 can now be thought of as quatemions < with 

tc = R*. 

If we define two unit quatemions h and p with 

h&p+ 1, 

we can write the most general isometry of S3 continuous with the identity as 

c’ = htp. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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It follows at once that 

<‘c;l = ec = R2. (4.9) 

Multiplication oft with the quaternion L from the left gives rise to the group Sp( I) of left 
translations while multiplication with p from the right leads to the right translations. The 
associative law of multiplication shows that the two groups commute with each other. While 
left and right translations separately make the S3 homogeneous, isotropy about a point like 
60 = R comes about through the diagonal of the direct product of the left and right-actions, 
namely by putting p = h: 

c’ = L$i ---+ R = R. (4. IO) 

While the poor S2 cannot carry even one vector field or, its dual, a single differential 1 -form, 
the S3 has two oo3 sets of each. To construct this cornucopia of invariant structures one 
picks a vector or a form in one point of S3 and moves it by left or right translations into 
the other points of the manifold. This turns out to be extremely simple and one creates in 
this way left- or right-invariant vector fields or forms on the manifold. If one puts the flow 
lines on, say, a left-invariant vector field one gets on the S3 a system of great circles known 
as the Clifford left parallels. Projection along these great circles, known as the Hopf map, 
turns the S3 into a principal fiber bundle over the base manifold S2 [ 111. 

To deal with the metric it is preferable to use left-invariant differential forms. On the S3 
given by 

66 = R2, 6 E H (4.11) 

we take the differential forms 

(4.12) 

Under left translation with fixed h 

6’ = AC, A.h = 1, h E H, (4.13) 

we have 

w’ = w. 

Because of ,$ < = R2 we notice that 

dS- c + c dc = 0, 

which gives at the point &, 

@It+= dxi+ dyj+ dzk, cc= R+Oi+Oj+Ok. 

We get for the metric at this point 

ds2 = dt dg = --w2. 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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If we put 

(4.18) 

we can write for the left-invariant metric 

ds’=w:+&++w,w/, 1=1,2,3, (4.19) 

which becomes at to 

ds21~=E0 = dX2 + dy2 + dz2. (4.20) 

A simple calculation shows that the metric (4.19) is also invariant under the right translation 

t’=cp, pp= 1, dt’dp = dcfi(dG) = d,$ d& = ds’ (4.21) 

since r( = p and ,6p = 1. The left-invariant vector fields which take at 40 the values 

(4.22) 

are dual and orthogonal to the differential l-forms oj (j, k = 1. 2, 3). Their great circle 
flow lines turn the S3 into a continuous Jungle Gym formed by three sets of Clifford left 
parallels orthogonal to the surface elements defined by the left-invariant 1 -forms. Clifford 
parallels keep a constant distance from each other. They are geodesics in the S” and look 
locally like skew straight lines that try to diverge from each other but are bent together by 
the curvature of the space exactly compensating for their divergence. Any two parallels 
become linked like two rings always keeping a constant distance. The Clifford parallels 
with a constant distance a from a given geodesic fill the surface of a torus with this geodesic 
as circular axis. The left parallels wind around the torus meridionally once in the opposite 
way as the right parallels. Two left parallels and two right parallels on the torus form a 
parallelogram on this Clifford surface that develops into an ordinary parallelogram in the 
Euclidean plane. 

5. The stretched S” 

With this sketch of the S3 anatomy the structure of Bianchi’s stretched S’ is easily 
formulated. While keeping the whole scaffold for S3 in place we vary the definition of the 
metric to 

1 
d.? = -(a~: + bw; + co:), 

ubc 
a, b, c > 0, const. (5.1) 

Since the new metric on the S3 is built upon the left-invariant differential forms it is still 
invariant under left translations and keeps the homogeneity intact. The space is stretched 
by factors proportional to fi, &, & in three orthogonal directions. All its curvature 
properties will not depend on position. Only if a = b = c will isotropy be preserved. This 
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is quite different from the stretching of the periodic cube in the Euclidean space into a brick; 
there the space remains flat and the local isotropy will not be affected. 

The metric on the strained S3 is a symmetric strain tensor on the 3-space of the left- 
invariant differential forms. The tensor stretches the unit sphere in the cotangent space of 
each point into an ellipsoid with the semi-axes proportional to &, A, fi and we thus 
shall lose rotational invariance of the metric. If the ellipsoid is one of revolution, say, with 
a = b, the right translations 

p = cos iti + sin $$k z exp($$k), 4 E R, k E H, (5.2) 

will give rotations about the c-axis which transform the ellipsoid - and thus the metric - 
into itself. We speak then of the symmetric case. If all axes are different, the only right 
translations surviving as isometries are (besides the identity) the three rotations by n of the 
ellipsoid about its three principal axes. These operations form the Klein 4-group. 

It is the nature of S3 as the compact, simple non-Abelian Lie group Sp( 1) which allows 
us to study the arcane notion of space curvature as mere ether-curling. 

The S3 of radius R has the metric 

ds2 =wlwr, 1 = 1,2,3, (5.3) 

expressed in terms of the left-invariant differential forms WI. The size of space is fixed 
through the equations of Ludwig Maurer and Elie Cartan which express the differentials of 
the left-invariant forms wl again in terms of their cross vector products [ 151 

I 
dwl = --elm, on, A co,,, 

R 
l,m,n = 1,2,3, El23 =+l. 

Levi-Civita’s .slmn form the completely skew-symmetric set of structure constants for the 
Lie algebra sp( 1). The Gaussian curvature K in any geodesic plane is given by 

K = 1/R2. (5.5) 

One can imagine that the three left-invariant vector fields Xk describe the three different 
ether streams blowing in different directions and interpenetrating each other. The differential 
forms ~1 measure the speeds of these ethereal winds and the angles they make with each 
other. 

Assume now that the metric has the form (5.3). That means that the speeds ds/dt, or in 
modem notation, 

wr (dldr) (5.6) 

are all equal to 1 and orthogonal. The Maurer-Cartan equations describe then how a feather 
wafting in one of the invisible streams will turn with respect to the two other streams. Its 
angular speed will be given by 1 /R. Local isotropy of space makes the little propeller turn 
in every direction at the same rate. It is the beautiful connection between the small and the 
large in a group like a simple S3 that a wafting feather feels the size of the universe. 

To study the curvature of a Riemannian manifold one needs further differentiation to 
construct the curvature tensor of Riemann and Christoffel. But for the space of a simple Lie 
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group one does not need to go to such subtleties. Here the group introduces a metric. The 
metric and the curvature tensor are quadratic forms built from the structure constants of the 
group. 

If we deform the metric of the S3 with R = 2 by constants a, b, c as in (5.1). we 
shall keep fixed the differential forms WI and their structure constants in the Maurer-Cartan 
equations (5.4). Space will now be stretched by factors proportional to fi. &. ,/Z in 
orthogonal directions. This changes the speeds of the ether flow in our picture in general in 
a non-isotropic way. Correspondingly, the angular velocities of our little propellers will now 
become dependent on direction. The three great circle systems of Clifford left parallels will 
remain geodesic. Their length changed from 41r now to 4x/&. 4x/&, and 4x/,/&. 
Also the volume of the stretched S3 goes from 1 6rr2 to 1 6n2/trbc. 

To make sure that the stretching of 5’ actually leads to an intrinsically changed manifold 
one calculates the Ricci tensor of the manifold. The eigenvalues of this tensor are invariants 
while the tensor describes completely the curvature properties of the three-dimensional 
Riemannian manifolds. 

We obtain for the eigenvalues of the Ricci tensor 

RI) = 2(s - b)(s - c), R22 = 2(s - c)(s - a), R33 = 2(s - a)(.~ - 6) (5.7) 

with 

s = ;(a+b+c). (5.8) 

The eigenvectors of the tensor are in the direction of the principal strains &, &, and A. 
In the following we shall always choose 

Otaibic. (5.9) 

It will lead to 

R11 F R22 I R33, R33 > 0. (5.10) 

It is then not difficult to see that different ratios a : b : c lead to different ratios RI 1 : R22 : 
R33 and vice versa in the allowed range of the eigenvalue ratios (except for u + b = c.). 
(See Figs. 2 and 3.) 

6. The dantes 

CANTO XXVIII 
THE NINTH SPHERE: THE PREMIUM MOBILE 

The Angel Hierarchy 
DANTE TURNS from Beatrice and beholds the vision of GOD AS A NON-DIMEN- 
SIONAL POINT OF LIGHT ringed by NINE GLOWING SPHERES representing the 
ANGEL HIERARCHY 

Dante is puzzled because the vision seems to reverse the order of the Universe, the 
highest rank of the angels being at the center and represented by the smallest sphere. 
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A 

/ a=b :E I ._ 
l/Z 

\ 

\ 

o<asb<c 
\ \ \ \ \ 

a+b 
C 

Fig. 2. Diagram for the stretching ratios of an S3. The S3-metric ds2 = WY + W: + W: with 

dq = - isjk/ wk/q isdistorted into dS2 = (abc)-’ [nw:+bw~+cw:]. The hypotenuseoftheright-angled 
triangle ABC covers symmetric snake-like shapes while the side BC describes turtle-like shapes. The side 
AC (with end points included) deals with degenerate configurations which are excluded. The vertex B de- 
notes the isotropically stretched S3. Here a = b = c. For the right triangle BCD all eigenvalues of the 
Ricci tensor are positive. In its right part BCF all principal curvatures are larger than zero. On the dashed 
line CF the smallest principal curvature vanishes. (This means that the largest eigenvalue of the Ricci tensor 
becomes the sum of the two other eigenvalues.) On the line CD the two smallest eigenvalues of the Ricci 
tensor take on the value zero. The principal curvatures are there: ab, ab, -ab. In the left triangle ACD 
the two smallest eigenvalues of the Ricci tensor are always negative while the largest eigenvalue remains 
positive. In the region CDE the Ricci scalar which is twice the sum of the principal curvatures is positive 
and vanishes on the dashed line CE. In the domain ACE the Ricci scalar is negative. 

Beatrice explains the mystery to Dante’s satisfaction, if not to the reader’s, and goes on 
to catalogue the ORDERS OF THE ANGELS. 

(translated by John Ciardi) [I] 

The stretched S3-s come in all sizes since their volume can take any positive value. Their 
intrinsic shape depends on two parameters presenting us with the intriguing problem to 
visualize the simplest symmetric forms of a compact Riemannian 3-space. This problem 
is all the more challenging because one is dealing here with mysterious objects of great 
mathematical beauty. While a hyperellipsoid with equation 

(x/a>’ + (y/b12 + (z/cJ2 + (u/dj2 = 1 (6.11 

embedded into the R4 with different length of the axes 2a, 2b, 2c, 2d has only a few discrete 
symmetries -the stretched S3-s are all homogeneous. That means they allow oo3 symme- 
try operations. In the symmetric case they have rotational symmetry in each point giving 
even ca4. 
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Fig. 3. Diagram for the eigenvalue ratios of the Ricci tensor in a stretched S”. Point B denotes again the 
isotropically stretched S3. Here RI 1 = R22 = R33, the eigenvalues of the Ricci tensor are equal and thus the 
principal curvatures. The segment from -1 to I of the R22/R33-axis, except the origin D, does not represent 
possible configurations. While the map from the triangle ABC in Fig. 2 to the two triangles here is one-to-one 
with corresponding points denoted by the same letters, the line CD in Fig. 2 collapses here into the point D. 
If RI t = 0 then Rz2 has to vanish too. 

Moreover, all finite subgroups of the Sp(1) Z SU(2) group of left translations can be 
used to identify points giving rise to different space forms for the stretched S3. The examples 
are the lens spaces L(p, p - 1). It would seem apt to have a simple name for these intriguing 
models of space other than the bland Bianchi Qpe IX. We also see no merit in the practice of 
the mathematicians to coin words with prefixes pseudo, semi, hemi, paru, erc Since Dante 
appears to have been the first to visualize a compact 3-space with a rich structure we shall 
call these spaces after him duntes. 

A study of dantes began in 1949 with the largely unpublished investigations of Kurt Godel 
in Princeton [8]. He studied all nine Bianchi types as space models for Einstein’s theory of 
gravitation but announced only a few results of his extensive calculations - mostly without 
proof. His main concern was to demonstrate the existence of closed time-like world lines 
in rotating models of the universe. 

In 1952 Abraham Taub discussed vacuum solutions of the Einstein field equations based 
on all nine Bianchi types [33]. Since then the study of dantes as spaces for cosmological 
models has been a major field of research in general relativity and cosmology. Principal 
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insights have been obtained into the nature of space-time through the work of Charles 
Misner and it was shown that Mach’s principle is not a consequence of Einstein’s theory of 
gravitation [22]. 

But in spite of an extensive literature that may comprize now about 1 O3 papers and books 
[26] the nature of the dantes has remained still obscure. If we study curved manifolds 
intrinsically, we get a feel for it comparable to touching a surface but leaving us blind for 
seeing its global properties. The sphere, the ellipsoid or the S3 are best appreciated when 
viewed from outside, that is to say, imbedded into a Euclidean space of higher dimension. It 
is for this reason that we report here a few results for the imbedding of dantes. The general 
problem has been solved for RP3 [23]. 

7. Isometric imbedding of Riemannian manifolds into Euclidean spaces 

In 1873 Ludwig Schlafli described the problem of a local isometric embedding for a 
Riemannian manifold M into an m-dimensional Euclidean space Rm [27]. The points of 
the Rm can be denoted by a position vectory 

(7.1) 

The line element in R”’ is given by the metric 

dS2= dydy= dyldyl, l=l,..., m. (7.2) 

In the neighborhood of one of its points P the manifold M, assumed to be n-dimensional, 
can be referred to a coordinate chart with coordinates x p. Little Greek indices like ,LL run 
here from 1 to n and the point P may be the origin of the chart. 

A Riemannian manifold M has a line element 

dS2=glL,(Xh)d-XCLdX”, p,v,k=I ,..., n, gp,,=gvp, (7.3) 

with positive definite quadratic form whose coefficients g,” are assumed to be analytic 
functions in the neighborhood N of the origin. 

A local analytic embedding for the neighborhood N is then given by m analytic functions 

yl = yl(x*), 1 = 1,. . . ,m, h = 1,. . . , n, (7.4) 

of n independent variables. To assume that this map from N into the R”’ is locally injective 
(different points go into different points) and smooth one requests that the Jacobian m x n 

matrix 

(3Yl P-e (7.5) 
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has rank n. Through this procedure one has lifted a piece of the manifold M into the 
Euclidean Rm where one can now look at it in a familiar surrounding. An example of this ap- 
proach was shown in (1.3) where we embedded a large piece of the S3 into the Euclidean R”. 

The embedding is called isometric if Euclid’s metric on R”’ is pulled back through the 
embedding onto the manifold M. This means simply that the ds2 in (7.2) and (7.3) should 
be the same for all x!-‘ in N. We get thus Schlafli’s equations 

dy, dv/ = $ g dx’” dx” = gP,, dx’l dx” 

or the system of :n(n + 1) partial differential equations i 

(7.6) 

(7.7) 

The v,(x”.) are here the unknown functions that have to be found as solutions of the 
+n(n + 1) equations with given right-hand sides. Schlafli guessed right that one needs in 
general in(n + 1) functions y,(x*) to solve the equations and thus m 2 $n(n + I). 

Elie Cartan proved this conjecture in 1927. A proof published in the previous year by 
Maurice Janet had not been quite convincing and was made rigorous by the Russian math- 
ematician C. Burstin in 1931 [ 161. 

While two-dimensional Riemannian (Gaussian) manifolds are locally just surfaces in R3 
as Ossian Bonnet recognized, for the higher-dimensional ones one needs a lot more space 
for local isometric embedding. The three-dimensional manifolds will require in general a 
six-dimensional Euclidean space to accomodate them locally without distortion. 

The problem assumes new dimensions when one is more ambitious seeking global isomet- 
ric embedding of the whole Riemannian manifold. Manifolds are described as a patchwork 
of local neighborhoods. Having a local embedding for each patch in the crazy quilt of a 
manifold creates a problem of stitching the image pieces smoothly together in the Euclidean 
embedding space. One may thus be forced into higher dimensions or get back to where one 
had been before intersecting the image from another patch. If such self-intersections for 
a global embedding are not ruled out one speaks of an immersion. A figure eight is an 
immersion of S’ in R2. 

An example of a two-dimensional manifold that does not fit isometrically into the R3 
is the flat torus, the Clifford surface. As piece of the periodic plane (see Fig. 1) the flat 
torus has locally an isometric embedding into the R2. But this torus experiences terrible 
distortions and becomes afflicted by severe curvatures when it attempts to squeeze itself into 
Euclid’s R”. A plausible theorem states that there is no two-times continuously differentiable 
isometric embedding of the flat torus into the R3. But there is the donut if one drops the 
adjective isometric. 

Another celebrated example of an isometric global embedding is that of S2 with opposite 
points identified and its natural metric - known also as RP’, the projective plane. The 
Southern hemisphere without the equator, almost the whole space, is isometrically embed- 
ded into the R” just by being there, the identity map for the purists. But the opposite points 
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at the equator that are here far apart and need to merge are now the problem. The global 
isometric embedding becomes possible in the R5 by the map 

y1 = x2/& y2 = y2/d% y3 = z2/1/2, 
(7.8) 

Y4 = XY, y5 = xz, yij = yz. 

It immerses the unit sphere S2 

x2 + y2 + 22 = 1 (7.9) 

into the hyperplane 

Yl +Y2+y3 = l/-Jz 

of the R6 and thus into the R5. The map is isometric since with 1 = 1, . 

ds2 = dyl dyi 

= [x2 + y2 + z21[dx2 + dy2 + dz21 + [x dx + y dy + z dz12 

becomes 

ds2 = dy/ dyl = dx2 + dy2 + dz2 

(7.10) 

6 

(7.11) 

(7.12) 

on the S2. Opposite points on S2 with coordinates (x, y, z) and (-x, -y, -z) are mapped 
into the same point of the R5. It is easily seen that the map of the RP2 into the R5 is 
injective. This embedding of the projective plane is the famous Veronese surface. There is 
no two-times continuously differentiable isometric embedding of the R P2 with the sphere 
metric into a Euclidean R4. 

From theorems like these it becomes clear that the global isometric embedding, even of 
simple manifolds, might be a very difficult problem. One could doubt whether it always had 
a solution. In 1956 John Forbes Nash laid these doubts to rest. In his epochal papers [ 191 
he showed that global isometric embeddings existed albeit in Euclidean manifolds of high 
dimensions. For the analytic embedding of three-dimensional compact analytic Riemannian 
manifolds he needed at least 30 dimensions. Later work by Mikhael Gromov and Vladimir 
Rokhlin [9] reduced the numbers of dimensions considerably. But their minimal number 
still remains uncomfortably high and the existence theorems are not much help in finding 
a global isometric embedding for a given Riemannian manifold. 

An isometric embedding creates a concrete model of an abstract manifold. But this 
model can only be useful for the study of the manifold if it turns out to be a submanifold 
of the Euclidean embedding space. That means the topology of the manifold (the notion of 
nearness for its points) must agree with the topology induced on its image in the embedding 
space by the Euclidean notion of nearness in this space. If this condition is not met, we see 
a mathematical horror picture show. Example: The immersion of the line $2 = fi& on 
the torus described in Fig. 1. The infinite one-dimensional straight line has been chopped 
into pieces that are completely irrationally arranged on the torus. The line comes infinitely 
close to every point on the bagel without covering it. To study a line in such a maimed 
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form would be in the medical vocabulary a “suboptimal procedure”. A further requirement 
is the rigidity of the embedding. That is, it must be fixed up to the congruence groups of 
the embedding space, i.e. its rigid motions. Naturally, one would like to keep the number 
of dimensions for the embedding Euclidean space as low as possible. We turn now to some 
embeddings of dantes. 

8. The embedding of dantes 

To find an embedding for the dantes one has to solve Schlafli’s equations (7.7). This turns 
out to be a difficult problem and we shall not even attempt to cite those formulae here. Nat- 
urally, one will first try to embed the dantes as hypersurfaces into four dimensions since one 
may vaguely think of them as some hyper-ellipsoids. The answer is surprising: the only dante 
that can be isometrically embedded into the Euclidean R4 is the S’. the undistorted sphere. 

After this disappointing result one tries to embed the dantes isometrically into the live- 
dimensional Euclidean space. In fact it turns out to be simpler to ask specifically whether 
one can embed a dante into an S4. Although pieces of dantes could be found undisturbed 
in the S4 thus leading to local isometric embedding, the result was disappointing again: no 
dante (except the S”) can be embedded analytically and isometrically into an S” [20]. 

At this stage of the investigation it became clear that one should tackle the much more 
difficult problem of finding dantes that could be embedded into an S’. The result of long and 
elaborate calculations was: There are no analytic isometric embeddings of a dante (except 
S”) into the five-dimensional sphere [21]. The global embedding problem for the dantes 
is still unsolved. At the root of it lies a singular stability and rigidity of the S” against the 
homogeneous distortion that leads to the dantes. 

However, in the search for an embedding, local embeddings were discovered. Although 
we have not yet been able to view the dantes,from the outside, we can now look at well- 
defined pieces of them, some space forms of the dantes. 

9. Forms of the dantes 

Killing’s search for the possible forms of spaces with constant curvature can also be 
extended to the dantes. All discrete subgroups of the left translations given by SlJz give 
rise to a space form for the dante through point identification. The discrete subgroups of 
SU2, discovered by Felix Klein [ 141, are double versions of the well-known cyclic, di-. 
tetra-, octa-. and icosahedral groups which occur as finite subgroups of SOs. Hans Bethe 
discussed these double groups and their representations in 1929 [3] to account for the 
behavior of spinning electrons in crystal fields. 

Since the group SU2 is also the group of unit quatemions we can picture the elements of 
a discrete subgroup of order n as n points on a unit S”. We describe the points of a dante 
through quaternions 6 with 

(i = R', (9.1) 
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and take the unit quaternions hj (j = 1, . . . , n) 

itj hj = 1, no summation over j, 

as the elements of the discrete subgroup H,, of SUz. The orbit of the subgroup H, through 
the point 6 is then given by the set of IZ points <j 

(j =A.jt, <I =hlc, hl = 1. (9.2) 

The IZ points cj for any { in (9.1) are then identified as one point of the quotient manifold 
S3/Hn. The group H,, becomes then Poincare’s fundamental group for the dante form. Since 
this group is invariant it helps to characterize the dante form topologically. 

The simplest example of a double group is one that doubles the unit element 1 of SO3 to 
1 and -1 of SU2. With 

H2 = (1, -1) 

we identify the opposite points 

t2 = t-11 *t> (1 = 1 .t 

(9.3) 

(9.4) 

creating a “projective” dante half as large as its original. 
The embedding of projective spaces is a fascinating chapter of geometry. We mention 

here only Francois ApCry’s immersion of the projective plane (Boy’s surface) [2] into the 
R3 and the isometric embedding described in Section 7. 

The projective dante with 

a=b=l. c=2 (9.5) 

can be isometrically embedded into the five-dimensional sphere S5 by the “spin- 1” map. 
The projective dante is given by the equation 

lz,12 + 12212 = 1, ZI,Z2 E c, (9.6) 

with points (ZI , ~2) and (-21 , -zz> identified. Borrowing terminology from quantum me- 
chanics we define the spin-j map C2 -+ C2j+’ by 

Li ( 1 
112 

L = I j, m) = 
j+m j-m 

j-4-m ” 22 ’ j > m 1 -j. (9.7) 

Here 2 j is a positive integer while m runs through the values 

j, j-l, . . . . -j. 

The spin-$ map is the identity 

Cl/2 = I& ;, = ZI, c-1/2 = I& -+, = z2, 

The spin- 1 map reads 

{I = II, 1) =z:, co = ]l,O) = z/zz,z2, t-1 = ]I, -1) = z;. 

(9.8) 

(9.9) 



I. Ozsvdth, E.L. Schiicking/Journal of Geometry and Physics 24 (1998) 303-333 321 

The spin-j map gives with the binomial theorem 

i: &Cm = ij (j 2:m)(,zll”)ii’“(,zzl?)j-” = (lz,12 + lz*12)2j = I. (9.10) 
,?I=-J 

and provides thus an image of the S3 /Z2,; in the unit S4j+‘. This is clear if one considers that 
the J& are the coordinates of a complex space of dimension 2 j + 1 and thus of a real space 
with dimension 4j + 2. Eq. (9.10) gives the equation of a sphere in this space. Since the 
map employs homogeneous polynomials of degree 2j it is evident that the points (zt , 1~) 
and 

( 2rril* 2nil-L 
z~ expT, z2 exp7 , 

> 
0 I w < 2.i. (9.1 I) 

have the same image. We are thus embedding the lens dante L(2 j, 1) into the sphere S4j+‘. 
From the spin- 1 map we find from (9.9) 

j 
&’ = c 1 d&l2 = 2121 dz2 - z2 dzt I2 + 4121 &I + Z2 dzz12 (9.12) 

m=-j 

which can be written as 

ds2 = 2(w; + w;) + 4~;. (9.13) 

We have put here 

iw+ = i(wt + iw2) = z1 dz2 - z2 dzl, iwg = Zl dzt + Cdz2. (9.14) 

To see that w+ and w3 are left-invariant differential forms on Sl_J2 we write the elements U 
of SU2 as 

u= (:I -lf2)? det U = IZI I2 + 1~21~ = 1 

The left-invariant differential forms become 

21 dzl +Zzdzz Z2dZt - Zt dZ2 
= 

ZI dz2 - z2 dzt z1 dit + z2 dZ?, 

(9.15) 

(9.16) 

with 

~~dz~+?2dz2+~1dZt +z2dG =0 (9.17) 

because of the second equation of (9.15). We write 

U+ dU = -ia, wP, Ll = 1,2,3, dPnv = 1 S,,, + iePL,hOk, (9.18) 
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where oK are the left-invariant differential forms ’ and the ncL are the Pauli matrices: 

The Eq. (9.18) means 

U+dU=-i w3 
( wt + iw2 

This gives for the natural metric on SU2 

(9.19) 

(9.20) 

d12 = det lJ+dU = (lzt I2 + 1z212)(1 dzt I2 + I dz212) = wf + wi + wg. (9.21) 

Comparing with (9.13) we see that the embedded projective dante is a P3 with its natural 
metric stretched by a factor 2 in the 3-direction. The projective dante is given by the equations 

Kl I2 + IhI + I(-I I2 = 13 2{t{_t -+o. (9.22) 

Introducing new variables 

Cl = $(i+ + C-1 c-1 = AK+ -C-)7 (9.23) 

we can write Eq.(9.22) as 

1~+1”+1~012+1~-12=1 r;+52-<;=o. (9.24) 

The projective dante is the complex projective circle on the real unit S5. This most harmo- 
nious object represents the point D in Figs. 2 and 3. 

While the Veronese embedding of the R P3, the analog of (7.8), needs the vastness of an 
S8 a simple stretch along one axis by a factor of 1/2 enables us now to squeeze the projective 
dante elegantly into an S5. 

The embedding of the projective dante gives as a spin-off an embedding of the projective 
plane. By taking z2 real we obtain a plane and parametrize the spin- 1 map 

zi = sin 7Yeiq 22 = cos 0 

(1 = sin* z9e2i’P, (0 = 1/2 sin 7.9 cos Be”O, c-1 = cos2 0. 
(9.25) 

’ To check the normalization of the left-invariant differential forms op we write the Maurer-Cartan equations 
in agreement with (5.4) 

d(U+dlJ)=-iu,dw,,=dU+r\dU=dU+r\UU+dU=dUtU~U+dU 

= - Uf dU A U’dU = ahwh A d,,w,, = i E~~,,o~w~ A wu, 

or 
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We obtain then for R P* the metric 

ds2 = f: 1 d& ]* = 2 [de* + sin* 19 (1 + sin* 6) dp*]. (9.26) 
WI=-j 

The embedding of the projective plane goes into the S4 like the Veronese surface. 

10. Spherical space forms embedded 

When one is trying to look at the mysterious spherical space forms from the outside one 
wants to find an isometric embedding for them. A first guess was that it should be simplest 
to embed the space forms of the isotropic S3. But it turned out to be a very difficult problem 
that has yielded its solution only in the last years. 

The critical idea was to look for embedding into Euclidean spheres and to require that 
the embedded manifold has a three-dimensional volume that is stationary (a minimum) 
under a variation of the isometric embedding. A breakthrough for the solution for this 
much more restricted problem, the isometric embedding as a minimal manifold of a higher- 
dimensional sphere, was achieved by Tsunero Takahashi in 1966 [32]. He found that such 
embeddings are obtained by means of functions which are all eigenfunctions of the Laplace 
operator on the manifold belonging to the same eigenvalue of the operator. Using Takahashi’s 
theorem Dennis DeTurck and Wolfgang Ziller managed in 1992 to find minimal isometric 
embeddings into spheres for all homogeneous spherical space forms [6]. 

Unfortunately, in spite of all efforts to keep the dimensions of their engulfing space as 
low as possible, there were none or them that fitted into R6 - apart from the trivial map into 
R4. The piece de resistance of their impressive collection had been first shown to exist by 
Norio Ejiri in 1981 [7] and was actually constructed by Katsuya Mashimo in 1984 [IS]. 
The embedding is given by 

(10.1) 

with 

1z,1*+)z*1*=1~y,y,=~, a!=1 )..., 7. (10.2) 

DeTurck and Ziller found that this isometric immersion of S3 into S6 is actually the em- 
bedding of the space form S3/ T*, where T* is the tetrahedral double group represented by 
the 24 unit quatemions 

f 1. fi, ztj, fk, $(&lfifjfk). (10.3) 
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We had already noticed in Section 9 that the projective non-spherical dante was nestling 
snugly in the S5 while the Veronese sphere needed an S* as lebensraum. We shall study in 
the following a similar case. 

11. PoincarC’s cube 

Another double group of interest is Hamilton’s Hs. Its eight elements can be represented 
by the quatemions 

Hs = (&I, fi, &j, fk]. (11.1) 

This group is obtained through the doubling of the Klein 4-group acting as rotations about 
three orthogonal axes by rr, plus, the identity. It is the smallest non-Abelian group whose 
subgroups are all normal. 

When Poincare studied the fundamental group of manifolds - now known as the one- 
dimensional homotopy group-he investigated the possible identifications of vertices, edges 
and faces of a cube. There was the well-known example of the periodic cube whose identi- 
fications are brought about by finite translations. Henri Poincart demonstrated in his paper, 
[24] which introduced modem topology, a cube with a different topology. He identified 
opposite faces of an oriented cube by combining a translation with a rotation by ix. 

Poincare’s scheme can be elegantly described in a unit S3 whose points are unit quater- 
nions t 

$i = 1. (11.2) 

The 16 quatemions (belonging to the Hurwitz ring of integral quaternions) 

6 = ;(&I, fi, *j, fk) (11.3) 

lie on the S3 and form the vertices of a hypercube inscribed in the S3. In one dimension lower, 
this corresponds to inscribing a cube in the S2 as Kepler did into the sphere of Saturn. The 
sunlight projects the 12 edges of the cube as great circle arcs on Saturn’s orb. They divide 
the sphere into six quadrangles meeting in threes at each of the eight comers (see Fig. 4). 

Now back to the hypercube. One of its eight hypersurfaces is the cube Ct with eight 
vertices V(Cl) 

V(Cl) = i(l, fi, *j, fk). ( 1 1.4) 

Through left translations by multiplication with the eight elements of Hs one obtains eight 
cubes 

let, -lCt, iC1, -iCt, jCt, -jCt, kC1, -kCt. 

The six faces of the cube Ct are given by the vertices 

i(l, i, &L fk), i(l, -i, &j, fk), $(I, +i,j, fk), 

i(l,*i,-j,fk) $(l,*i,+j,k), $(l, fi. ??j, -k). 

(11.5) 

(1 1.6) 
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Fig. 4. The central projection of a cube onto a concentric sphere creates a division of the S2 into six congruent 
quadrangles bounded by arcs of great circles [after M. Berger, Geometq II. (Springer. New York, 1987) 
p. 45, with permission]. 

The four points on each face lie on a hyperplane through the origin. If we name the four 
coordinates of 6, 

(11.7) 

the faces of the cube Ct lie on the hyperplanes 

IA = fx, u = fy, u = fz 

through the origin 6 = 0. The six hyperplanes cut S3 

l4* + x2 + y* + 2 = 1 

(11.8) 

(11.9) 

in great spheres S* of radius 1 in analogy with the lower-dimensional example where the 
planes going through the edges and the center of the cube cut out arcs of great circles on 
S2. The cube Cl thus gives rise to a cubicle on S3 whose six walls are quadrangles of great 
spheres with radius 1 (see Fig. 5). By left translation of this cubicle with the elements of 
Hg we disect thus the S3 into eight cubicles. 



326 I. Ozsvdth, E.L. Schticking/Journal of Geometry and Physics 24 (1998) 303-333 

Fig. 5. One of the eight cubicles in the S3 parallely projected on the hyperplane u = 0. The view is 
from the positive t-axis. We look down on the bulging top face of the cubicle centered on the point 
x = y = z = 0, u = 1 of the S3 and see half of its four side faces. The faces of the projected cubicle are given 
by the intersection of the three ellipsoids of rotation 2x2 + y2 + z2 = x2 + 2y2 + z2 = x2 + y2 + 2z2 = 1. 
The coordinates of the visible vertices, mid-edges and face centers are given following crystallographer’s 
convention by indicating a negative value of a coordinate by a bar over the number. The u-values of all points 
of the cubicle are given by u = +(x2 + y2 + z2)‘/‘. 

The cubicle f?t with the eight vertices & (1, fi, &j, fk) has as its center the quatemion 

1 on the S3. This center is obtained as i the sum of the et vertices. We have then that the 
centers of the eight cubicles are also the elements of the group Hs, namely (f 1, fi, *j, fk}. 
These eight points form the vertices of a regular 16-cell dual to the hypercube. 

Each cubicle has an “anticubicle” whose eight vertices are the eight other points with the 
opposite values of the coordinates. The anticubicle is thus simply obtained by multiplication 
with - 1. In a projective space, like the orthogonal group SO(3), each cubicle would coincide 
with its anticubicle. 

We see from Fig. 6 that a cubicle has six neighbors sharing one of its six faces with one 
of each of the neighbors. That means: cubicles have either four vertices in common or none. 
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Fig. 6. Looking at a transparent cube from outside we may see its rear face framed inside its front face. 
Here we look at the hypercube from the outside and see its rear hyperface, the small cube inside thefront 
hyperface, the large cube. The six truncated Egyptean pyramids connecting the rear hyperface with the front 
hyperface are the six other hyperfaces (cubes) of the hypercube. One is asked to imagine that the interior 
of the front hyperface is a volume separate from that of the seven other hyperfaces. This is analogous to 
realizing that the front face of a box as window covers a different area from that of the rear-end and side 
faces. Vertices and edges to be identified in the cubicle under the group Hs (see text) have been marked 
identically [after D. Hilbert and S. Cohn-Vossen, Geometry and the lmagination (Chelsea, New York, 19.52) 
p. 150, with permission]. 

In the last case they are antipodes of each other. Every edge is shared by three cubicles and 
at each corner four cubicles abut. We obtain thus for the Euler characteristic of S” as the 
alternating sum of 

vertices - edges + faces - cubicles = 16 - 8 x y + 8 x $ - 8 = 0. 

We consider now the bottom quadrangle of the cubicle kt spanned by the vertices 

i‘f=$(l+i+j-k), ef=$(l-ifj-k), 

ef=i(l-i-j-k), t;f=i(l+i-j-k). 
(11.10) 

The scalar product of f?i with 6: is equal to &. This means that the arc of the edge (?; ef 

in the bottom quadrangle is 60” long since cos-’ i = 60”. The scalar product of (?/ 



328 I. Ozsvdth, E.L. Schiicking/Journal of Geometry and Physics 24 (1998) 303-333 

with I?: vanishes. We learn from this that the diagonal of the quadrangle has a length of 
90”. 

The top quadrangle of the cubicle 61 is spanned by the vertices 

(?r=i(l+i+j+k), ey=i(l-i+j+k), 

6:=;(1-i-j+k), t?f=i(l+i--j+k). 
(11.11) 

Left multiplication with the element k E H8 moves the bottom quadrangle onto the top 
quadrangle of the cubicle et. We have in fact 

(11.12) 

We can also carry out this motion less abruptly by multiplying from the left with 

eklo = lcos(p+ksin(o, 0 5 40 5 4% (11.13) 

and let (p grow from zero to in. The vertices of the bottom quadrangle move then along 
the (Clifford left parallel) diagonals of the four side quadrangles into the vertices of the 
top quadrangle. The center of the bottom quadrangle lies at (1 - k)/z/Z, that of the top 
quadrangle is situated at (I+ k)/& The geodesic connecting the two centers runs through 
the point 1 which is the center of the cubicle. This great circle arc is traced by multiplying 
(1 - k)/z/Z with the (11.13) factor e k9 from the left. It puts the positive k-axis into the 
cubicle. Its length from bottom to top is 90”. The four diagonals of (11.12) on the four 
sides are left-parallels of the k-axis. The left-multiplication with k thus brings about a 
screw motion propelling the bottom of the cubicle et onto the top while rotating it by 90” 
right-handedly. 

The same procedure can be carried out with the cubicle tt by left-multiplication with 
j and with i. We then end up with 12 diagonals of the six faces of 61 intersecting each 
other at right angles at the centers of the quadrangles. The centers of the opposite faces are 
pierced by the three axes through the centers of the cubicle. We have thus three systems of 
Clifford left parallels that intersect each other orthogonally in the center of the cubicle and 
in the midpoints of the six faces. 

Now comes the crucial step of forming the quotient space S3/ Hs. The S3 that had been 
filled with eight cubicles is thus reduced to the single cubicle f?i since all the others have 
been obtained from it by left-translation with the elements of the quatemion group Hg. 

This single cubicle has only three faces since the opposite ones have been identified after a 
right-handed rotation of 90” (see Fig. 7). Each quadrangle has four different edges which 
are the same for each face. Of the eight vertices only two remain different. The different 
points are connected by four edges like the north and the south pole of the earth by four 
meridians. The diagonals of the faces are now circles connecting a vertex with itself. This 
is Poincare’s magic cubicle, an object of exquisite symmetry and beauty. Its fundamental 
group is Hs which shows that the 3-manifold is not homeomorphic to any of Killing’s lens 
spaces. Heinz Hopf, the great Swiss topologist, identified it in his thesis [lo] as a possible 
space form of the three-dimensional space of positive curvature - a homogeneous universe 
reduced to one eighth of its potential volume. 
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Fig. 7. Opposite faces of the cubicle are identitied under the right-handed rotation by 90”. Poincare’s identi- 
fication is shown for the faces of the cube [from Jeffrey R. Weeks, The Shape of Space (Marcel Dekker, New 
York, 1985) p. 228, with permission]. 

12. Embedding of the PoincarC cubicle 

Besides the spherical space S3, the projective space R P3, and the periodic cube, the 
Poincare cubicle is the simplest compact form of space. It is a most beautiful and harmonious 
construct that should appear in all geometry books. While it can be studied as a quotient 
space one would like to see its isometric embedding into a higher-dimensional Euclidean 
space. 
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The spaces S3, RP3, (S’)3 have the isometric embeddings 

s3 : xjxj = 1 c R4, j = 1,2,3,4, (12.1) 

RP3 : Yj = L(Xj)z, 
& 

ykl=XkXl, lik<154, XjXj=l, (12.2) 

(S’)3 : x, +iy, =e i& , a = 1,2,3, C& E R. (12.3) 

An isometric embedding of the Poincare cubicle was given by DeTurck and Ziller [6]. It is 
a minimal embedding into S8 of radius (3/80) ‘I* However, a one-parameter set of dames . 
with the topology of the Poincare cubicle has been isometrically embedded into R5 [20]. 
The dantes have vanishing Ricci scalar and the metric 

ds* = ;(l + A)*w; + $(l - h)*w; + w;. (12.4) 

The embedding into the R5 is given by 

y1 + iy2 = i[zj + z$ - Az:zf 
y3 + iy4 = zTZ2 - ZIZ~ + hz1z2Uzl I2 - 1~21~) (12.5) 

ys = ;A rz:z; + E:z; - $_[(la I2 - lz212>2 - 2121 121z21211 

with 

Jztl* + lz2]* = 1 and h arbitrary (lh] # 1). (12.6) 

It follows that 

Y:+Y;+y~+y~+.Y~=~(1+~~2). 

This shows that the embedded manifold fits 
substitutions 

(12.7) 

into an S4. It is easily checked that the 

(ZI + izl, z2 + -iz2) and (zl + ~2, z2 -, -ZI> (12.8) 

generate the quatemion group Hs and leave the map (12.5) invariant. Since the map is 
isometric for the dante (12.4) it is regular and one finds without any major effort that it is 
indeed injective on Poincare’s cubicle. It is remarkable that this fascinating construct exists 
not only as quotient space but lives in various shapes of smoothly embedded dantes in the 
pelagic depth of the S4 without intersecting itself in any way. 

Suprisingly, these are precisely the dantes - apart from S3 - that can be isometrically 
immersed into S4. 

We have a particularly pretty case for a vanishing parameter h. The dante becomes then 
axially symmetric and slimmed, orthogonal to the axis, by a factor of 2. The metric is 
then 

ds* = $N; + w,“) + w_;, 

and the embedding is given by 

(12.9) 
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Yi + iy2 = i[zf + zil, y3 + iy4 = 232 - Z,Z~, y5 = $A[z$~ + ziz$ 

(12.10) 

with 

(z112 + lz212 = 1. 

We have the nagging doubt that this is not yet the most elegant formulation. But quatemions 
suspected as vehicle for such an improvement have so far refused to admit that. 

13. The anti-Mach universe 

The idea that the earth’s rotation against the stars might be indistinguishable from the 
opposite rotation of the stars against a fixed earth appears in the The Science of Mechanics 
by Ernst Mach [ 171. When Einstein’s special relativity was proposed in 1905 velocities of 
bodies larger than the speed of light were outlawed. The thought of stars moving with a 
million times the speed of light to making a day for a resting earth should then have appeared 
patently absurd to a relativist. Not so to Albert Einstein. In 1916 he created the theory of 
general relativity with the express wish of conceiving rotation also - like translation - as a 
relative motion of the body. 

As a gift for Einstein’s 70th birthday his friend Kurt Godel demonstrated that general 
relativity conceives of a rotating universe that defies Mach’s principle of the relativity of ro- 
tation. Einstein, however, did not appreciate Godel’s counterexample because the space of 
the Godel cosmos was not compact and the space-time manifold allowed closed time- 
like world lines which Einstein deemed unphysical. However, a model of the cosmos 
with a compact space and without closed time-like world lines could be constructed no 
longer open to Einstein’s objection. This anti-Mach universe was in a state of rotation 
against absolute space. It demonstrated that Einstein’s wish to turn the rotation of a body 
into a relative motion with respect to the cosmos was not a consequence of his general 
relativity. 

The anti-Mach universe is given by the line element [22] 

ds2 = - dt2 - R&?&03 dl 

+(iR)2[(1 -k)w: + (1 +k)w; + (1 +2k2>w$l, (13.1) 

with parameters k and R such that 

]k( 5 $, R > 0. (13.2) 

This line element is a solution of the Einstein field equations with incoherent matter, with 
a A > 0 term and 

KP - = 1 - 4k2, 
1 

A = 
2A R2(1 - k2)’ 
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where p is the density of the incoherent matter and K is the gravitational constant. Investi- 
gating the properties of this model universe one can easily substantiate all the statements 
made above. 

The t = const hypersufaces are given by the dante with the line element 

ds2=(;R)2[(1 -k)o:+(1+k)w;+(l+2k2)o;]. 

This dante, endowed with the topology of R P3, has the following embedding: 

(13.3) 

~1 + i ~2 = (R/2)&(1 - k>2 + k2)/2 (z: - z;), 

~3 = (R/2& - k12 + k2)/2 (2122 + z1z2), 

~4 + i YS = (R/2)~((1 + kj2 + k2)/2 (zf + &. (13.4) 

y6 = (R/2)J((l + k12 + k2)/2 (-i)(zIZ2 - 21~21, 

y? + iy8 = (R/2)~7i=i722i~z2. 

y9 = (R/2),/(1 - 2k2)/2 (22222 - 1). 

Since 

9 

cyk’= ;(3+2k2), 
k=l 

the embedding is actually into an eight-dimensional sphere ([23]). 

14. Conclusion 

Luigi Bianchi’s discovery of the dantes in 1897 presented his fellow mathematicians with 
a cornucopia of beautiful spaces. Our attempt to grasp their geometry by looking at them 
from outside has only begun. In special cases has the first author been able to immerse them 
without distortion by finding all those that fit into the R5 or S5 [20,21]. These immersions 
turned out to embeddings of dante forms through simple functions that play an important 
role on these spaces. It is a challenging problem in “space research” to find through isometric 
embedding a proper setting for Bianchi’s mathematical gems. 

Acknowledgements 

We are grateful to David E. Dunn, Robert J. Serfling and Hobson Wildenthal of the 
University of Texas at Dallas for their support. We thank an anonymous referee for correcting 
a wrong statement in the manuscript. 



1. Ozsvdth, E.L. Schiicking/Journal of Geometry and Physics 24 (1998) 303-333 333 

References 

[I] Dante Alighieti, The Paradiso, Translated by John Ciardi. New American Library. New York (1970). 
[2] F. ApCry, La Surface de Boy, Adv. in Math. 61 (1986). 
[3] H. Bethe, Termaufspaltung in Kristallen. Ann. Phys. Ser. (5) 3 (1929) 133-208. 
[4] L. Bianchi, Lezioni sulla teoria dei gruppi continui finiti di trasformationi, Spoerri. Pisa ( I9 IX I. 
151 W. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Sot. 4 (I 873). 
[ 61 D. DeTurck and W. Ziller, Minimal isometric immersions of spherical space forms in spheres. Comment. 

Math. Helvetici 67 (1992) 428458. 
171 N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Sot. 83 (1981) 759-763. 
[8] K. Godel. Rotating universes in general relativity theory, Proc. Int. Con,?. Muth.. Vol. I (19.50) 17.5. 
[9] M. Gromov and V. Rohklin, Embedding and immersions in Riemannian geometry. Russian Math. 

Surveys 25 (1970) l-57. 
l IO] H. Hopf. Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (192.5) 3 13-339. 
[I I] H. Hopf. Uber die Abbildungen der dreidimensionalen Sphare auf die Kugelflache. Math. Ann. 104 

(1931)637-665. 
[ 121 W. Killing, Erweiterung des Raumbegriffes, Programm Lyceum Hosianum (1884). 
[ 131 F. Klein, Vorlesungen iiber Nicht-Euklidische Geometrie (Springer, Berlin. 1968). 
[ 141 F. Klein, Lectures on the lcosahedron (Dover, New York, 1956) p.39. 
1151 S. Kobayashi and K. Nomizu, Foundations of Diferentia/ Geometry (Interscience. New York. 1963). 
[ 161 S. Kobayashi and K. Nomizu. Foundations qfD#erentiol Geometr?. Vol. 2 (Interscience, New York. 

1969). 
[ 171 E. Mach. The Science ofMechanics: A c,ritical and historicul occo~mt of’its de~~elopmenr. LaSalle. Ill. 

Open Court ( 1960). 
[ 181 K. Mashimo, Minimal immersions of 3.dimensional spheres into spheres. Osaka J. Math. 2 (1984) 

721-732. 
[ 191 J. Nash. The Imbedding problem for Riemannian manifolds. Ann. Math. 63 (1956) 20-63. 
(201 1. Ozsvath, An embedding problem, J. Math. Phys. 29 (1988) 825. 
1211 I. Ozsvath, Embedding problem II, J. Math. Phys. 33 (1992) 229. 
1221 I. Ozsvath and E. Schticking, Finite rotating Universes. Nature I93 (1962) 1168. 
1231 I. Ozsvath and E. Schticking, Isometric embedding for homogeneous compact 3-manifolds, GRG 2X 

(1996) 999. 
1241 H. Poincare. Analysis Situs, J. de I’Ecole Poly. (2)1 (1895) 67. 
1251 B. Riemann. CoUected Papers (New Edition by R. Narasimhan) (Springer. New York, 1990). 
[26] M. Ryan and L. Shepley, Homogeneous Relativistic Cosmologies (Princeton University Press. Princeton. 

NJ. 1975). 
1271 L. Schlafli. Nota alla memorici del Sig. Beltrami sugli spazii di curvature constante. Ann. di Matem. 

(2)5(1X71-1873) 170-193. 
[ 281 L. Schlahi, Theorie der vielfachen Kontinuitat, Denkschriften der Schweizerischen naturforschenden 

Gesellschaft 38 (1901) pp.i-237. 
1291 K. Schwarrschild. Uberdas zulassige Kriimungsmass des Raumes, Virteljahrschrift der Astronomischcn 

Gesellschaft 35 (1900) 337. 
1301 H. Seifert and W. Threlfall, A Textbook $Topology (Academic Press. New York. 1980). 
[ 3 I ] A. Speiser, Klassische Stticke der Mathematik, Zurich (I 925). 
1321 T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Sot. Japan I8 (1966) 380-385. 
[ 331 A. Tauh. Empty space-times admitting a three parameter group of motions, Ann. Math. 53 (1% I ) 472. 
1341 W. Threlfall and H. Seifert, Topologische Untersuchungen der Diskontinuitats-bereiche endlicher 

Bewegungsgruppen des dreidimensionalen spharischen Raumes. I. Math. Ann. 104 ( 193 I ) I-70: II. 
IO7 (1932) 543-586. 


